dx是什么

文/赵春雨

dx是对x的微分,也可理解为“微元”,即自变量x的很小一段,或者x轴上很小的一段(很小的意思是,没有比它更小的,但它不等于零)。微分的几何意义,就在于它可以在局部用直线去近似代替曲线,误差只不过是一个关于dx的无穷小量,可以忽略不计。

dx是什么

数学中的dx

设函数y=f(x)在x0的邻域内有定义,x0及x0+Δx在此区间内。如果函数的增量Δy=f(x0+Δx)-f(x0)可表示为Δy=AΔx+o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,注:o读作奥密克戎,希腊字母,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy=AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx=Δx。于是函数y=f(x)的微分又可记作dy=f’(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

微分历史

早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

例如公元前五世纪,希腊的德谟克利特(Democritus)提出原子论:他认为宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的「一尺之捶,日取其半,万世不竭」,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。