线性插值法又称“内插法”,是利用函数在某区间中已知的若干点的函数值,作出适当的特定函数,在线性插值区间的其他点上用这特定函数的值作为函数的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
线性插值法的拉丁文原意是“内部插入”,即在已知的函数表中,插入一些表中没有列出的、所需要的中间值。
若函数在自变数一些离散值所对应的函数值为已知,则可以作一个适当的特定函数,使得在这些离散值所取的函数值,就是函数的已知值。从而可以用特定函数来估计函数在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。
线性插值法的优点: 图像平滑,无台阶现象。线状特征的块状化现象减少;空间位置精度更高。线性插值法的缺点: 像元被平均,有低频卷积滤波效果,破坏了原来的像元值,在波谱识别分类分析中,会引起一些问题。边缘被平滑,不利于边缘检测。
线性插值法计算公式:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。其中Y2>Y1,X2>X>X1。线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。
线性插值使用的原因:
目前,线性插值法使用比较广泛。在很多场合我们都可以使用线性插值。其中,最具代表性的使用方法是变量之间的对应关系没有明确的对应关系,无法使用公式来描述两个变量之间的对应关系,在这种情况下使用线性插值是比较好的解决办法。
可以在变量的变化区间上取若干个离散的点,以及对应的输出值,然后将对应关系分成若干段,当计算某个输入对应的输出时,可以进行分段线性插值。