正三棱柱的性质

文/张哲

正三棱柱的性质主要包括:各个侧面的高相等,底面是三角形。上下表面三角形是证三角形上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。正三棱柱共有9条棱,6个顶点,5个面。

正三棱柱的性质

正三棱柱的性质有哪些

正三棱柱是上下底面是全等的两正三角形,侧面是矩形,侧棱平行且相等的棱柱,并且上下底面的中心连线与底面垂直,也就是侧面与底面垂直.(正三棱柱含于直三棱柱,即正三棱柱是底面是正三角形的直三棱柱)

正三棱柱不一定有内切球:若正三棱柱有内切球,则正三棱柱的高一定是球的直径,此时正三棱柱的棱长为底面边长的(根号3)/3倍;

正三棱柱一定有外接球:但直径一定不是正三棱柱的高, 直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长。

三棱柱具有什么性质

1、侧棱都相等,侧面是平行四边形。

2、两个底面与平行于底面的截面是全等的多边形。

3、过不相邻的两条侧棱的截面是平行四边形。

4、横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小(横向受力使物体产生拉应力,纵向产生压应力。理论上压应力对物体有增强作用,拉应力着相反)。

5、棱柱体积=底面积×高。

三棱柱分类:

1、直三棱柱:是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱。上下表面三角形可以是任意三角形。正三棱柱是直三棱柱的特殊情况,即上下面是正三角形。

2、正三棱柱:三条侧棱皆平行,上表面和下表面是平行且全等的正三角形。正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。