求极限lim的常用公式有:
1、lim(f(x)+g(x))=limf(x)+limg(x);
2、lim(f(x)-g(x))=limf(x)-limg(x);
3、lim(f(x)×g(x))=limf(x)×limg(x);
4、lim(f(x)/g(x))=limf(x)/limg(x)limg(x)不等于0;
5、lim(f(x))^n=(limf(x))^n。
注意条件:以上limf(x)、limg(x)都存在时才成立。
lim是极限,是微积分中的基础概念,指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限可分为数列极限和函数极限。
第一个重要极限公式是:lim((sinx)/x)=1(x->0)。
第一个重要极限公式也可定性理解为,当自变量趋于0时,自变量的正弦和自变量趋近于零的程度等效,也就是后续的等价无穷小。而按照等价无穷小的定义,两个无穷小商的极限为1,则互为等价无穷小。
第二个重要极限公式是:lim(1+(1/x))^x=e(x→∞)。
第二个重要极限公式中将1/x换成y。用变量代换法可以产生出另一个公式。这两个公式虽然形式不一样,但本质都相同。都为1加无穷小的无穷大次方近似为1。这两公式中的自变量也可换为单项式多项式,从而由一个公式可以产生无数个公式。