根据收敛定义就可以知道,对于数列an存在一个数A,无论给定一个多么小的数e,都能找到数字N,使得n>N时,所有的|an-A|。
有极限是局部有界,收敛是整体有界。函数单调有界可能不存在极限(∞),数列单调有界必有极限。
通常收敛与有极限是同一个意思,但是有一个例外,就是如果极限时∞,我们说其发散。
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
令{an}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b恒成立,就称数列{an}收敛于A(极限为A),即数列{an}为收敛数列。