矩阵的秩怎么求

文/刘思琪

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

矩阵的秩怎么求

求矩阵秩的方法

用向量组的秩定义

矩阵的秩=行向量组的秩=列向量组的秩

用非零子式定义

矩阵的秩等于矩阵的最高阶非零子式的阶

单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形,梯矩阵中非零行数就是矩阵的秩

矩阵的秩的变化规律

(1)转置后秩不变

(2)r(A)<=min(m,n),A是m*n型矩阵

(3)r(kA)=r(A),k不等于0

(4)r(A)=0<=>A=0

(5)r(A+B)<=r(A)+r(B)

(6)r(AB)<=min(r(A),r(B))

(7)r(A)+r(B)-n<=r(AB)

(8)P、Q为可逆矩阵,则r(PAQ)=r(A)

(9)n阶方阵A,若|A|=0,则r(A)<n,否则r(A)=n

(10)若Ax=B有解,则r(A)=r(A,B)

(11)若A~B,则人r(A)=r(B)

(12)若所有n阶子式为零,则r(A)<t(t为A的逆序数)

(13)A中若有S阶非零子式,则r(A)>=S