(一)根据定义判断奇偶函数。
奇函数的定义:对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),等价表达f(-x)+ f(x)=0,那么函数f(x)就叫做奇函数。
偶函数的定义:对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(x)=f(-x),等价表达:f(-x) - f(x)=0,那么函数f(x)就叫做偶函数。
(二)根据图象判断奇偶函数。
若f(x)的图象关于原点对称,则f(x)是奇函数。
若f(x)的图象关于y轴对称,则f(x)是偶函数。
即奇又偶就是即关于原点对称又关于Y轴对称,这种只有常数函数且为0的函数。
非奇非偶就是即不关于原点对称又不关于y轴对称的函数。
(1) 两个偶函数相加所得的和为偶函数
(2) 两个奇函数相加所得的和为奇函数
(3) 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数
(4) 两个偶函数相乘所得的积为偶函数
(5) 两个奇函数相乘所得的积为偶函数
(6) 一个偶函数与一个奇函数相乘所得的积为奇函数