奇函数性质

文/李文源

奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。那么奇函数有什么性质呢?

奇函数性质

奇函数性质

1.两个奇函数相加所得的和或相减所得的差为奇函数。

2.一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

3.两个奇函数相乘所得的积或相除所得的商为偶函数。

4.一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

5.当且仅当f(x)(定义域关于原点对称)时,f(x)既是奇函数又是偶函数。奇函数在对称区间上的积分为零。

奇函数特点

1、奇函数图象关于原点对称。

2、奇函数的定义域必须关于原点对称,否则不能成为奇函数。

3、若f(x)为奇函数,且在x=0处有意义,则f(x)=0.

4、设f(x)在定义域I上可导,若f(x)在I上为奇函数,则f'(x)在I上为偶函数。

即f(x)= - f(-x)对其求导f'(x)=[-f(-x)]'(-x)'=-f'(-x)(-1)=f'(-x)