1、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(x+a)2=b的一元二次方程。根据平方根的定义可知,x+a是b的平方根,
2、配方法
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程ax2+bx+c=0(a≠0)的求根公式:
公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
一元二次方程指的是,经过化简后,只含有一个未知数,并且未知数的最高次数为2的整式方程。
像等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方。要判断一个方程是否为一元二次方程,需要先化简方程看是否满足条件。
一元二次方程的特点:
1、含有一个未知数。
2、且未知数次数最高次数是2。
3、一元二次方程是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
4、将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)。