特征值为0的特征向量

文/李傲

是使列向量的线性组合为0的系数。特征值为0说明矩阵的各列线性相关,此时的特征向量的各个分量即为使列向量的线性组合为0的系数。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。

特征值为0的特征向量

线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

特征值的几何重次是相应特征空间的维数。

有限维向量空间上的一个线性变换的谱是其所有特征值的集合。

例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。

猜你喜欢

绍兴全市中小学停课 确保台风天的师生安全

2021-09-14

高中单招是什么学历,是本科还是专科?

2021-09-14

奋斗青春作文800字 高中生议论文精选

2021-09-14

提高高中文言文阅读用什么教辅书

2021-09-14

基因的分离定律和自由组合定律区别 有哪些不同

2021-09-14

中秋国庆最强拼假方案 最多可以休几天

2021-09-14

2022承认吉林艺术统考/联考成绩的学校有哪些

2021-09-14

2022承认江西美术统考成绩的大学名单

2021-09-14

2022安徽美术统考/联考考试题目预测

2021-09-14

单招报名需要什么东西 单招怎么报名

2021-09-14