数列极限的性质

文/李傲

唯一性、有界性、保号性、保不等式性、迫敛性。若数列存在极限,则该极限唯一;若数列存在极限,则该数列一定有界;若数列存在极限,且极限大于零(或小于零),则存在正整数N,当n>N时,数列项an大于零(或小于零)。

数列极限的性质

若数列的每一项非负且数列收敛,则其极限也非负。可根据保号性定理,用反证法证明。

若数列的每一项小于等于零且数列收敛,则其极限也小于等于零。

数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。

在实数系中,单调有界数列必有极限。任何有界数列必有收敛的子列。

猜你喜欢

数列极限的定义怎么理解

2020-11-11

数列极限的求法

2020-01-21

数列极限定义证明步骤

2019-11-26

数列极限的证明

2019-11-22

绍兴全市中小学停课 确保台风天的师生安全

2021-09-14

高中单招是什么学历,是本科还是专科?

2021-09-14

奋斗青春作文800字 高中生议论文精选

2021-09-14

提高高中文言文阅读用什么教辅书

2021-09-14

基因的分离定律和自由组合定律区别 有哪些不同

2021-09-14

中秋国庆最强拼假方案 最多可以休几天

2021-09-14