反三角函数求导

文/刘美娟

反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。

反三角函数求导

反三角函数求导公式

反正弦函数的求导:(arcsinx)'=1/√(1-x^2)

反余弦函数的求导:(arccosx)'=-1/√(1-x^2)

反正切函数的求导:(arctanx)'=1/(1+x^2)

反余切函数的求导:(arccotx)'=-1/(1+x^2)

反三角函数遵循的规则

为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;

函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);

为了使研究方便,常要求所选择的区间包含0到π/2的角;

所确定的区间上的函数值域应与整函数的定义域相同。