完全弹性碰撞,没有能量损失,同时满足能量守恒方程和动量守恒方程
能量守恒方程:
(1/2)M1V1²+(1/2)M2V2²=(1/2)M1V1'²+(1/2)M2V2'²
M1V1+M2V2=M1V1'+M2V2'
其中,V2=0
(1/2)M1V1²=(1/2)M1V1'²+(1/2)M2V2'²
M1V1=M1V1'+M2V2'
由第二个方程解得V2'=(M1V1-M1V1')/M2,代入第一个方程
解得V1'==(M1+M2)V1/(M1+M2)
代回求得V2'=2M1V1/(M1+M2)
完全弹性碰撞的速度公式是怎么推导的无从得知,书上没讲,很多资料也没有讲,我想多半是为了不要影响思维的连贯性,所以将之省略了。我终于明白书上为什么没有把这个推导过程放在书里了,的确是太复杂,学习的时候多半会干扰对碰撞本身的关注。但是这么放弃也有点不甘心,就又花了些时间,第三次准备将其推导出来。
由动量守恒:
m1*v1+m2*v1=m1*u1+m2*u2
能量守恒:
0.5m1*v1^2+0.5m2*v2^2=0.5m1*u1^2+0.5m2*u2^2
并不完全消元,可解得一个关系:
v1+u1=v2+u2
把式子变形一下就是
v1-v2=u2-u1
左边是碰撞前物体1接近物体2的相对速度。右边是碰撞后物体2离开物体1的相对速度。因此物理意义就是接近速度等于相离速度。