|A|≠0
<=> A可逆(又非奇异)
<=> 存在同阶方阵B满足AB=E(或BA=E)
<=> R(A)=n
<=> A的列(行)向量组线性无关
<=> AX=0 仅有零解
<=> AX=b 有唯一解
<=> 任一n维向量都可由A的列向量组唯一线性表示
<=> A可表示成初等矩阵的乘积
<=> A的等价标准形是单位矩阵
<=> A的行最简形是单位矩阵
<=> A的特征值都不等于0.
<=> A^TA是正定矩阵.
若行列式中有两行对应成比例,则行列式为0;若行列式中有两行相同,则行列式为0;若行列式中有一行的元素全为0,则行列式为0。
行列式定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广,或者说在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。