一、高中数列基本公式
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=
Sn=
二、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
不乱买辅导书
很多高中生认为想要学好数学,就要多做题。所以就买了很多辅导书来做,但是对于数学成绩提高的效果却不是很明显。其实,学好数学和辅导书并没有直接的关联。有做辅导书的时间,高中生不妨好好整理一下自己的数学卷子,把卷子上的难题研究透了,比什么辅导书都有用。
整理错题
很多高中生都没有整理错题的习惯,其实用好错题本是很重要的。高中生可以把自己做错的题和不明白的题,都整理在错题本上,不懂的问题可以请教老师和同学,之后把正确的答案和思路都记录好。
记笔记
高中生不要以为只有文科才需要记笔记,数学同样可以记笔记,笔记中可以记录一些老师总结的方法和技巧,也可以记录一些公式的记忆方法和概念之类的。这本笔记和错题本就是高中生考试之前的重要复习资料了,没事儿的时候也可以翻出来看看。