1、sin30=1/2、sin45°=√2/2、sin60°=√3/2
2、sin代表正弦,在直角三角,∠α(不是直角)的对边与斜边的比叫做∠α的正弦,记作sinα,即sinα=∠α的对边/∠α的斜边。sina在拉丁文中计做sinus,翻译的人把印度语当成阿拉伯语翻译,根据发音最接近的单词:海湾,翻译成sinuses。
3、在古代的说法当中,正弦是勾与弦的比例。古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。
4、勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
sin指的是正弦
正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sinx,它的定义域为全体实数。
正弦型函数是形如y=Asin(ωx+φ)+k的函数,其中A,ω,φ,k是常数,且ω≠0。函数y=Asin(ωx+φ),(A>0,ω>0),x∈R的图象可以看作是用下面的方法得到的:先把y=sinx的图象上所有的点向左(φ>0)或向右(φ<0)平行移动|φ|个单位,再把所得各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1/ω倍(纵坐标不变),再把所得各点的纵坐标伸长(A> 1)或缩短(0<A<1)到原来的A倍(横坐标不变)。当函数y=Asin(ωx+φ),(A> 0,ω> 0),x∈〔0,+∞)表示一个振动量时,A就表示这个量振动时离开平衡位置的最大距离,通常把它叫做振动的振幅;往复振动一次所需要的时间T=2π/ω,它叫做振动的周期。单位时间内往复振动的次数f=1/T=ω/2π,它叫做振动的频率,ωx+φ叫做相位,φ叫做初相(即当x=0时的相位 )