数学轨迹方程求解常用方法总结

文/刘楠

轨迹方程就是与几何轨迹对应的代数描述。符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。下面是高三网小编整理的数学轨迹方程求解常用方法,供参考。

数学轨迹方程求解常用方法总结

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

点击查看:高中数学知识点总结

二、求动点的轨迹方程的常用方法:

求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

以上是高三网小编整理的数学轨迹方程求解常用方法,相信对同学们会有一定的帮助的。

高三网小编推荐你继续浏览:学好高中数学的方法总结
高中数学必考公式大全
高中数学函数知识点归纳总结
做数学填空题的技巧有哪些?
数学好的男生选什么专业发展好?
高中数学学习方法与技巧
影响数学学习成绩的因素有哪些?
高中数学不等式知识点总结
如何提高学生数学学习效率?

猜你喜欢

高三数学提分最快的方法 如何高考前逆袭

2021-03-26

高中数学提分最快的方法是什么 如何数学成绩逆袭

2021-03-26

高考数学86条秒杀结论 数学做题技巧大全

2021-03-25

快速提升数学选择题的小技巧有什么

2021-03-25

高中学数学要背知识点吗 需要背哪些

2021-03-24

高考数学必刷小题 值得推荐的教辅书有哪些

2021-03-24

高中数学答题技巧 考试时需要注意什么

2021-03-23

高三数学成绩差怎么办 上一对一辅导班有用吗

2021-03-23

高三数学一对一补课有用吗 效果怎么样

2021-03-23

高考前100天数学很差应该怎么学 方法有哪些

2021-03-23