0的0次方没有意义,这是在确定指数函数时所规定的;因为0的0次方,同时存在着两个相互矛盾的概念:
(1)0的任何次方为0;
(2)任何数的0次方为1。
0的0次方是悬而未决的,在某些领域定义为1、某些领域不定义(无意义)。定义的理由是它在某些领域有用处,方便化简公式。不定义的理由是以连续性为考量,不定义不连续点的函数值。有些人认为,套用指数律公式得到0⁰=0¹⁻¹=0¹/0¹=0/0,但如果这种推论能成立,则0=0¹=0²⁻¹=0²/0¹=0/0,除数不得为零,会得到0也不定义的结果。
任何数的零次方等于多少,要分为两种情况,在我们学习过的所有数字当中,“零”是一个非常特殊的数,除去0以外的任何数的零次方都是1,而0的零次方是没有任何意义的。
次方在数学当中就是一个数与本身相乘的次数,一般用上标方式表示,例如5x5可以表示5,即5的2次方,也可读作5的平方。
在任何数的次方当中,零依然是特殊的,所以任何数的次方要把“零”和非零分开来讲。对“零”来讲,一种是零的0次方,这是和无意义的表示;另一种就是零的非零次方,其结果还是0。
对于非零的任何数来讲,也可分两种情况,一种是这个数的0次方,其结果规定为数值“1”。另一种就是这个数的非0次方,结果也是该数自身相乘次数的结果。