求函数拐点的一般步骤

文/鲁映彤

求函数拐点可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:求f''(x);令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点。

求函数拐点的一般步骤

拐点怎么求

若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

⑴求f''(x);

⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;

⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f''(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。

拐点的充分条件

设f(x)在(a,b)内二阶可导,x0∈(a,b),则f‘’(x0)=0,若在x0两侧附近f‘’(x0)异号,则点(x0,f(x0))为曲线的拐点。否则(即f‘’(x0)保持同号,(x0,f(x0))不是拐点。

当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。

若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。另外,如果c是拐点,必然有f''(c)=0或者f''(c)不存在;反之则不成立;比如,f(x)=x^4,有f''(0)=0,但是0两侧全是凸,所以0不是函数f(x)=x^4的拐点。