假设原矩阵是A,单位阵是E就是对角线上是1其余全为0的矩阵,构造的新的矩阵是(A,E)的时候,只进行初等行变换变为(E,B)则B就是他的逆。
1、b实施初等行变换,即,如果与a i进行完全相同的百干初等行变换,目标变为a,单位矩阵。在A被变换为单位矩阵I的同时,B的右半边矩阵同时被变换为A的逆矩阵。可逆矩阵一定是方阵。如果矩阵A是可逆的,则逆矩阵是唯一的。A的逆矩阵的逆矩阵还是A。(a-1)-1=A。可逆矩阵A的转置矩阵AT也是可逆的,(AT)-1=(a-1)T(转置的逆等于相反的转置)。
2、如果矩阵A是可逆的,则矩阵A满足消除律。也就是说,ab=o(或ba=o)、b=o在ab=ac(或ba=ca)中是b=c。两个回答可逆矩阵的乘积仍然是可逆的。只有当矩阵是可逆的并且它是全秩矩阵时。
3、后退在一n一楼,行列ian一楼和单位写着的nx2n的行列的b=[a|i]b小学行变换实施,对版即ai和完权的全部同样的若干的初等行变换,目标成为了a单位的行列。以a为单位,与行列的i一起,与b的右半边矩阵一起成为a的逆行列。
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一回的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个答可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。