1、掌握多种解法
一道数学题往往有多种解法,有时方法不同,解题时的难易、繁简程度差异很大。解答数学题首先要掌握常规解法,它的优点是即使做不到底,解答题做出部分也能得些分,缺点是运算有时麻烦,甚至难以算到底,或计算过程中容易出错。巧妙解法的优点是解答过程简单,省时省力,但是不容易想到,如果想偏了,思路不对,就几乎得不到分。
因此,要辩证地看待数学常规解法和巧妙解法。我们提倡在掌握常规解法的基础上,努力追求巧妙解法。值得指出的是,不掌握常规解法一味追求巧妙解法无异于舍本逐末,而不追求巧妙解法只会用常规方法解题则无助于能力提高。
2、数学学习和做题要养成良好习惯
一些学生平时解题只注意结果,不注意规范书写,这儿扣一分,那儿扣两分,尽管答案正确,总分却不高。解答题有些学生书写潦草,难以辨认。这些细节都要引起足够重视。
一些学生数学课堂上只满足于听懂,不动手演算。其实,只听懂是远远不够的,它离掌握知识、形成能力还有很远的距离,真懂、假懂或懂到什么程度只有在动手算的时候才能得到检验。
数学审题错误或计算错误是导致会而不对或对而不全的主要原因,平时总认为是粗心,其实还是习惯不好造成的。有时一个符号就会丢掉十几分,要在学习过程中自觉养成严谨的学风,对现在学习有利,对以后做事也有利。
一、分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。
二、推理记忆法
许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。例如,平行四边形的性质,我们只要记住它的数学定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。