重视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多,常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。
人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类,热门岗位包括大数据系统架构师(大数据平台搭建、系统设计、基础设施),大数据系统分析师(利用大数据技术进行数据安全生命周期管理、分析和应用),数据分析师(专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测,实现数据的商业意义),大数据可视化工程师(依据产品业务功能,设计符合需求的可视化方案,选择合适的可视化技术,制作可视化样例)等。
工作方向不同,工作经验不同工资多少不定。以大数据开发工程师为例:应届毕业生,7K+;1-2年,8-14K;3-4年,18K+;5年以上,25K+,这些都是一般情况,具体的工作内容不同还会稍有变动。
但是数据分析师这个职位大概是最常见的,指的是不同行业中,专门从事行业内数据搜集、整理、分析,并依据这些数据做出研究、评估的专业人员。
这类职缺通常要求求职者有数学、统计、或是电脑科学等的相关学位跟背景,最常见的工作技能要求是SQL、R、SAS、Excel,以及随着需要处理的数据量日渐庞大,Hadoop 也被许多公司列为必备的基本条件之一。
美国地区数据科学家的年薪大约在 $36,139 到 $77,696 美元之间(约等于年薪台币 110 万到 240 万),中间值大约是$51,224 美元(台币 160 万)。拥有统计分析、数据建模(Data modeling)以及 SAS等技能的应徵者一般来说更有机会得到高薪。