1.大数据系统架构师
大数据平台搭建、系统设计、基础设施。
2.大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期治理、分析和应用。
3.hadoop开发工程师。
解决大数据储备问题。
4.数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和猜测的专业人员。在工作中通过运用工具,提取、分析、出现数据,实现数据的商业意义。
作为一名数据分析师,至少需要纯熟SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少把握一门数学软件如matalab、mathmatics进行新模型的构建,至少把握一门编程语言。总之,一个优秀的数据分析师,应该业务、治理、分析、工具、设计都不落下。
大数据应用技术专业的毕业生未来可以从事的岗位包括数据采集、数据整理、大数据运维、数据分析、大数据应用开发等。
在知识结构的设计上,大数据应用技术涉及到数学、统计学、编程语言、大数据平台、操作系统、数据分析工具等内容,另外也会涉及到物联网、云计算等相关方面的内容。数学和统计学是大数据技术的重要基础,即使从事落地应用也要重点掌握一些常见的算法。
编程语言的学习通常会集中在Java、Python、Scala、R等编程语言上,从目前就业的角度出发,Java是不错的选择。如果未来想从事大数据应用开发岗位,那么需要重点学习一下编程语言部分。
大数据平台的学习是大数据应用技术的重点学习内容之一,大数据平台的学习内容包括大数据平台的部署、调试、维护等内容。目前Hadoop、Spark是比较常见的大数据平台,同时这两个平台也比较适合初学者学习和实验。经过多年的发展,目前大数据平台的组件已经逐渐丰富,所以这部分学习内容也相对比较多。
数据分析工具的学习可以从基本的Excel开始,然后进一步学习各种BI工具,在学数据分析工具的过程中也涉及到一些常见的数据分析算法以及数据库知识。
最后,随着大数据技术逐渐落地到广大的传统行业,未来大数据应用专业的就业前景还是比较广阔的。