函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案!
经验法:在排序或者有规律的题目也使用。首先比如求三角形面积。你看答案里a:12,b,13,c:6,d:11.第一,12,13,11明显是拼凑的错误答案。第二肯定有陷阱是三角形面积忘记除以2,所以c的答案正确率高。还有一些答案,前几个是重复的,就像下面的图一样,不会就选重复答案多的那几个!1,2重复答案为两个,c,d最可能。
如果,实在找不到任何方法,那就看答案,有共同公约数的一般是有正确答案。一般那些和其他三项不会有任何相似的答案,一般就是错的。可以直接排除,找答案其实就是找不同。看参透作者的想法,考虑题目想设置什么陷阱,去排除一些无关的答案。
1.恒成立问题
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
2.圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
3.曲线方程
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
4.离心率
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
5.三角函数
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;