1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4、选择与填空中出现不等式的题目,优选特殊值法;
5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
1.做清楚课本后面所有的题
这是数学老师的要求,一开始觉得即便我基础差,课后练习未免也太low,不愿意做,但还是在高三开始前的假期完成了。教材毕竟是教材,看似和考试要求相差甚远,实则是打基础的最佳材料。
2.研究透真题
我对比了十套高考数学卷,发现几乎都是一个套路,于是我开始集中练习。我是这样做的,比如大题第一道总是三角函数,我就把所有三角函数一起做,不会就看答案,再做,循环往复,十套卷子的三角函数都会了,这时再做新的卷子上的三角函数题时,就觉得完全没难度了。