由基本的求导公式可以知道y=lnx,那么y'=1/x,如果由定义推导的话,(lnx)'=lim(dx->0) ln(x+dx) -lnx / dx=lim(dx->0) ln(1+dx /x) / dx,dx/x趋于0,那么ln(1+dx /x)等价于dx /x,所以lim(dx->0) ln(1+dx /x) / dx=lim(dx->0),(dx /x) / dx=1/x,即y=lnx的导数是y'= 1/x。
导数的几何意义函数y=fx在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率。导数的几何意义是该函数曲线在这一点上的切线斜率。导数的应用导数与物理几何代数关系密切。在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度。