l = n(圆心角)× π(圆周率)× r(半径)/180=α(圆心角弧度数)× r(半径)
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)
例:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180
=45×π×1/180
=45×3.14×1/180
约等于0.785
弧长的计算公式L=的推导过程:
因为360°的圆心角所对的弧长就是圆周长C=2πR(R为圆的半径)
所以1°的圆心角所对的弧长是2πR/360,即。
这样n°的圆心角所对的弧长的计算公式是L=n*2πR/360,也就是l=n°πr÷180°。