以三阶伴随矩阵为例:
首先求出各代数余子式
A11=(-1)^2*(a22*a33-a23*a32)=a22*a33-a23*a32
A12=(-1)^3*(a21*a33-a23*a31)=-a21*a33+a23*a31
A13=(-1)^4*(a21*a32-a22*a31)=a21*a32-a22*a31
A21=(-1)^3*(a12*a33-a13*a32)=-a12*a33+a13*a32
……
A33=(-1)^6*(a11*a22-a12*a21)=a11*a22-a12*a21
然后伴随矩阵就是
A11 A12 A13
A21 A22 A23
A31 A32 A33然后再转置,就是伴随矩阵。
在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。