线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。
回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。
离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.
总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。
第一:用所给样本求出两个相关变量的(算术)平均值
第二:分别计算分子和分母:(两个公式任选其一)分子
第三:计算b:b=分子/分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)