arcsinx是奇函数还是偶函数

文/叶丹

奇函数。首先设定义域内为D,取定义内中任意一x,x∈D。f(x)=y=arcsinx,那么f(-x)=arcsin(-x)=-arcsinx=-f(x),故y=arcsinx是奇函数。

arcsinx是奇函数还是偶函数

arcsinx是奇函数

奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。arcsinx满足奇函数的定义:

arcsin(-x)=-arcsinx

正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

反正弦函数

在数学中,反三角函数,偶尔也称为弓形函数,反向函数或环形函数是三角函数的反函数(具有适当的限制域)。 具体来说,它们是正弦,余弦,正切,余切,正割和辅助函数的反函数,并且用于从任何一个角度的三角比获得一个角度。 反三角函数广泛应用于工程,导航,物理和几何。

反正弦函数(反三角函数之一)为正弦函数y=sinx(x∈[-½π,½π])的反函数,记作y=arcsinx或siny=x(x∈[-1,1])。由原函数的图像和它的反函数的图像关于一三象限角平分线对称可知正弦函数的图像和反正弦函数的图像也关于一三象限角平分线对称。