椭圆的相关知识点公式

文/叶丹

椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

椭圆的相关知识点公式

数学椭圆知识点汇总

椭圆的面积公式

S=(圆周率)ab(其中a,b分别是椭圆的长半轴,短半轴的长).

或S=(圆周率)AB/4(其中A,B分别是椭圆的长轴,短轴的长).

椭圆的周长公式

椭圆周长没有公式,有积分式或无限项展开式。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如

L = /2]4a * sqrt(1-(e*cost)^2)dt((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率

椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则

e=PF/PL

椭圆的准线方程

x=a^2/C

椭圆的离心率公式

e=c/a(e1,因为2a2c)

椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的`距离,数值=b^2/c

椭圆焦半径公式:|PF1|=a+ex0 |PF2|=a-ex0

椭圆过右焦点的半径r=a-ex

过左焦点的半径r=a+ex

椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a

点与椭圆位置关系:点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1

点在圆内: x0^2/a^2+y0^2/b^21

点在圆上: x0^2/a^2+y0^2/b^2=1

点在圆外: x0^2/a^2+y0^2/b^21

直线与椭圆位置关系

y=kx+m ①

x^2/a^2+y^2/b^2=1 ②

由①②可推出x^2/a^2+(kx+m)^2/b^2=1

相切△=0

相离△0无交点

相交△0 可利用弦长公式:A(x1,y1) B(x2,y2)

|AB|=d = (1+k^2)|x1-x2| = (1+k^2)(x1-x2)^2 = (1+1/k^2)|y1-y2| = (1+1/k^2)(y1-y2)^2

椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a

椭圆基本知识点

blob.png

blob.png