反正切函数arctanx的导数
(arctanx)'=1/(1+x^2)
函数y=tanx,(x不等于kπ+π/2,k∈Z)的反函数,记作x=arctany,叫做反正切函数。其值域为(-π/2,π/2)。反正切函数是反三角函数的一种。
反正切函数arctanx的求导过程
设x=tany
tany'=sex^y
arctanx'=1/(tany)'=1/sec^y
sec^y=1+tan^y=1+x^2
所以(arctanx)'=1/(1+x^2)
arctanx的图像
其他常用公式
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)