二阶导数等于零的意义

文/叶丹

当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

二阶导数等于零的意义

二阶导数几何意义

(1)切线斜率变化的速度,表示的是一阶导数的变化率。

(2)函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。

这里以物理学中的瞬时加速度为例:

a=dv/dt=d²x/dt²根据定义有

可如果加速度并不是恒定的,某点的加速度表达式就为:

a=limΔt→0,Δv/Δt=dv/dt(即速度对时间的一阶导数)

又因为v=dx/dt,所以就有:

a=dv/dt=d²x/dt²,即元位移对时间的二阶导数

将这种思想应用到函数中,即是数学所谓的二阶导数

f'(x)=dy/dx (f(x)的一阶导数)

f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)

二阶导数的意义

简单来说,一阶导数是自变量的变化率,二阶导数就是一阶导数的变化率,也就是一阶导数变化率的变化率。

连续函数的一阶导数就是相应的切线斜率。一阶导数大于0,则递增;一阶倒数小于0,则递减;一阶导数等于0,则不增不减。

而二阶导数可以反映图象的凹凸。二阶导数大于0,图象为凹;二阶导数小于0,图象为凸;二阶导数等于0,不凹不凸。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点。

猜你喜欢

拐点是二阶导数为零的点吗

2019-12-08

二阶导数的意义

2019-12-07

专科工资高的十大专业 哪些专业有前景

2021-03-26

美术生大学四年花费多少 贵吗

2021-03-26

高中议论文作文素材摘抄2021

2021-03-26

学美发的最佳年龄 多大学合适

2021-03-26

男性冷门高薪职业有哪些 什么职业挣钱

2021-03-26

高考英语如何快速提分

2021-03-26

掌门一对一的价格表 收费情况是什么

2021-03-26

高雅有意境的四字成语

2021-03-26